Site: RAC	KER	<u>ASHALT</u>
Break:	1.9	
Other:	V.2	

APPENDIX C

SITE INSPECTION WORKSHEETS

This appendix consists of worksheets that can be used to generate an SI site score. Completion of these worksheets is not required, but the SI investigator must evaluate an SI score, either by these worksheets, *PREscore*, or other Regional scoring tools.

The worksheets consist of instructions and data tables to be filled in with scores from HRS reference tables. The data tables may also call for Data Type and References.

DATA TYPE: The Data Type columns should be filled in with an H, Q, or + if the data are HRS quality and well documented. The Data Type column should be filled in with an E, X, or - if the data represent estimates, approximations, or are not fully documented. This type identifies data gaps for the expanded SI to investigate.

REFERENCES: The Reference columns should be filled in with coded reference numbers. The numbered reference list should be attached or the numbering should be cross-referenced to the SI Narrative Report.

The SI investigator will need the current Superfund Chemical Data Matrix (SCDM) OSWER Directive 9345.1-13 (revised semi-annually) to complete these worksheets.

10449699

SITE INSPECTION WORKSHEETS

SI 6243

L	LOCATION
SITE NAME: LEGAL, COMMON, OR DESCRIPTIVE NAM	
Cracker Asohalt STREET ADDRESS, ROUTE, OR SPECIFIC LOCATION I	
	IDENTIFIER
Po Box 3323	
CITY	STATE ZIP CODE TELEPHONE
Monadville	AL 35404 (205) 553-8129
COORDINATES: LATITUDE and LONGITUDE	TOWNSHIP, HANGE, AND SECTION
33°00' 42"N 8737'22"W	24N 5E SW/4 NW/4
OWNER/OPERATO	R IDENTIFICATION
OWNER	OPERATOR
Conrad Wesselhoeft	
OWNER ADDRESS	OPERATOR ADDRESS
PO Box 3323	
СПУ	CITY
STATE ZIP CODE TELEPHONE	
STATE ZIP CODE TELEPHONE AL 35 404 (205) 53-8129	STATE ZIP CODE TELEPHONE
/FL W 10 20 35,5-8129	
SITE EVA	ALUATION
AGENCY/ORGANIZATION	
ADEM	
INVESTIGATOR	
Jerreny Stamps	
CONTACT	
ADDRESS 1890 AA Cong. W.L. Dickinson Drive	
0111	STATE ZIP CODE
Mont gomery	AL 36109
1334) 213-4320	,

GENERAL INFORMATION

	·	· 	· · · · · · · · · · · · · · · · · · ·	
	····			
				
•				
		,		
				_
				_
		 		
				_
	<u>·</u>			
				_
				
				
	· · · · · · · · · · · · · · · · · · ·			_
·	<u>.</u>		·	

Location

ī

The Cracker Asphalt Facility (CAF) is located in Moundville, Tuscaloosa County, Alabama. The geographic coordinates are 33° 00' 42.86" North latitude and 87° 37' 22.18" West longitude. The town of Moundville is a small incorporated community consisting of approximately 1,348 residents.

The Moundville area has a moist subtropical climate with precipitation well distributed throughout the year. Tuscaloosa County receives precipitation of 0.10 inch or more approximately 75 days out of each year and has an average yearly precipitation of 49.26 inches.

The mean annual temperature for Tuscaloosa County is approximately 63.4° F. On a monthly average, January is the coldest and July is the warmest. January has an average daily maximum temperature of 54.9° F and an average daily minimum temperature of 33.5° F. July has an average daily maximum temperature of 91.7° F and an average daily minimum of 70.2° F.

Site Description

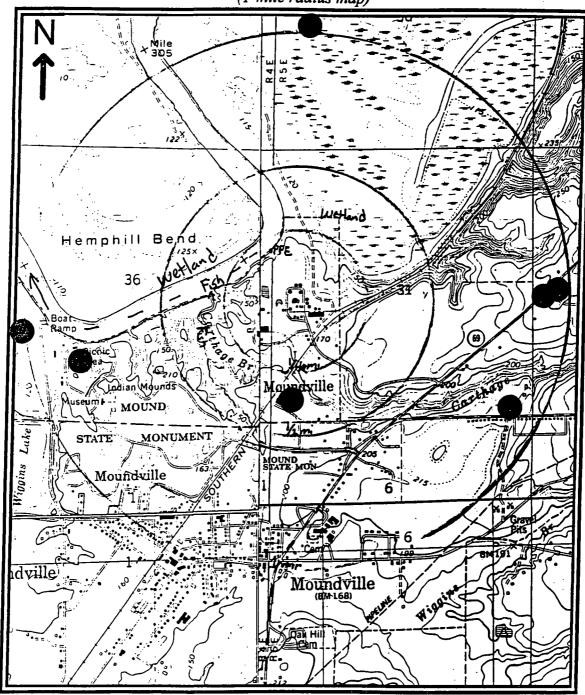
The CAF site is located in the SW 1/4 of the NW 1/4 and the NW 1/4 of the SW 1/4 of Section 31, Township 24 North, Range 5 East in Tuscaloosa County, Alabama. The CAF site is bound on north by pine forest and swamp land, and then by the Black Warrior River; on the south by rail road tracks, and then by residential property and farm land; on the east by a dirt methane well access road, and then by pine forest and swamp land; on the west by Lawter Chemical Plant, and then by the Mound State Monument. The nearest residential property is approximately 400 feet to the south of the site.

The CAF site is an approximately 25-acre dogleg shaped parcel of land. It is presently improved with 9 buildings, 24 above ground storage tanks and a lagoon that captures much of the surface water runoff from the site. The site is accessible to the general public from all directions. The only part of the site currently being utilized are the buildings on the site.

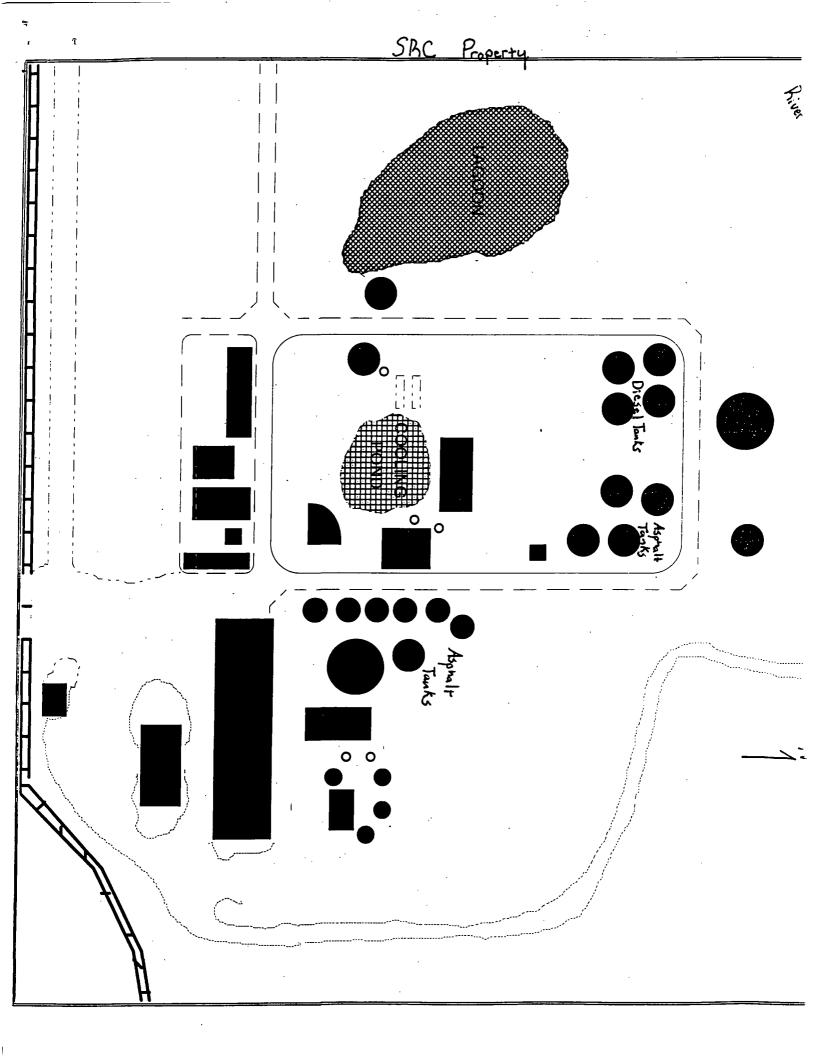
The CAF site is approximately 100 to 175 feet above mean sea level with a 2 to 6 percent sloping topography. All the Area surrounding the CAF site is at elevations lower than that of the site. Therefore, surface water runoff from the surrounding area would not flow across site under normal conditions. The Black Warrior River runs along the northwest boundary of the CAF site and is the nearest probable point of entry (PPE) into the surface water pathway for runoff exiting from the site.

Operational History and Waste Characteristics

During a bankruptcy sale that took place in 1968, Conrad Wesselhoeft purchased the CAF site. The CAF site was previously owned by Cracker Asphalt Company, an asphalt refining and storage company. The Cracker Asphalt Company left behind warehouses, shops, various types of petroleum and asphalt processing equipment, a cooling pond, a sediment pond and several large above ground storage tanks. After purchasing the property, Mr. Wesselhoeft's metal fabrication business made use of the office, shops, warehouses and much of the open space on the site. Mr. Wesselhoeft also has occasionally leased one of the tanks (350,000 gallon capacity) on the site to Southern Resins Company (EPA ID #: ALD004034138) for storage of by-product petroleum solvents.


The possible sources of the documented and suspected contamination coming from the CAF site include a sludge pond, a cooling pond, two asphalt skimmer trenches, a tank that has occasionally been used to store petroleum solvents, and several other tanks that have not been used since the bankruptcy of the Cracker Asphalt Company.

GENERAL INFORMATION (continued)


environments access roads,	Provide a sketch of the site including sources of wastes parking areas, fences, fields and other features.	Indicate all per , areas of visible s, drainage patter	tinent features of the and buried wastes ms, water bodies, v	he site and neam , buildings, reside regetation, wells,	oy ences, sensitive
	· :		· .		• .
	<i>,</i> ,				
		•		•	·
·					·
			·		
					·
	·				
			· · · · · · · · · · · · · · · · · · ·		
·					

Cracker Asphalt Facility Site

(1-mile radius map)

Source: U.S.G.S. 7.5 Minute Topographic Quadrangle

GENERAL INFORMATION (continued)

Source Descriptions: Describe all sources at the site. Identify source type and relate to waste disposal operations. Provide source dimensions and the best available waste quantity information. Describe the condition of sources and all containment structures. Cite references.

SOURCE TYPES

Landfill: A man-made (by excavation or construction) or natural hole in the ground into which wastes have come to be disposed by backfilling, or by contemporaneous soil deposition with waste disposal.

Surface Impoundment: A natural topographic depression, man-made excavation, or diked area, primarily formed from earthen materials (lined or unlined) and designed to hold an accumulation of liquid wastes, wastes containing free liquids, or sludges not backfilled or otherwise covered; depression may be wet with exposed liquid or dry if deposited liquid has evaporated, volatilized or leached; structures that may be described as lagoon, pond, aeration pit, settling pond, tailings pond, sludge pit; also a surface impoundment that has been covered with soil after the final deposition of waste materials (i.e., buried or backfilled).

Drum: A portable container designed to hold a standard 55-gallon volume of wastes.

Tank and Non-Drum Container: Any device, other than a drum, designed to contain an accumulation of waste that provides structural support and is constructed primarily of fabricated materials (such as wood, concrete, steel, or plastic); any portable or mobile device in which waste is stored or otherwise handled.

Contaminated Soil: An area or volume of soil onto which hazardous substances have been spilled, spread, disposed, or deposited.

Pile: Any non-containerized accumulation above the ground surface of solid, non-flowing wastes; includes open dumps. Some types of waste piles are:

• Chemical Waste Pile: A pile consisting primarily of discarded chemical products, by-

products, radioactive wastes, or used or unused feedstocks.

• Scrap Metal or Junk Pile: A pile consisting primarily of scrap metal or discarded durable

goods (such as appliances, automobiles, auto parts, batteries, etc.) composed of materials containing hazardous substances.

• Tailings Pile: A pile consisting primarily of any combination of overburden from

a mining operation and tailings from a mineral mining.

beneficiation, or processing operation.

• Trash Pile: A pile consisting primarily of paper, garbage, or discarded non-

durable goods containing hazardous substances.

Land Treatment: Landfarming or other method of waste management in which liquid wastes or sludges are spread over land and tilled, or liquids are injected at shallow depths into soils.

Other: Sources not in categories listed above.

SOURCE EVALUATION

Source No.: 1	Source Name: Skimmer Trench	Source Waste Quantity (WQ) Calculations:
	7,200 cubic foot oil and asphalt	7,200 / 67.5 = 107
skimmers (surface in	npoundment)]
		1
ŀ		·
Source No.: 2	Source Name: Sludge Pond	Source Waste Quantity (WQ) Calculations:
	65,000 cubic foot pond backfilled	
	ntaminated sludge and sediment	
(surface impoundment		
(surrass impoundants	,	
1		
		·
		}
	·	
Source No.: 3	Source Name: Contaminated Soil	Source Waste Quantity (WQ) Calculations:
Source Description:		25 acres / 0.78 = 32
·		
		·
	_	
<u> </u>		
Source No.: 4	Cause Name Tools	Course Wasta Quantity (WQ) Coloulations
	Source Name: Tanks	Source Waste Quantity (WQ) Calculations:
	5,350,000 galon capacity tanks	53,500 / 500 = 107
tanks = 53,000 gallon	percent residue remaining in the	
taliks – 33,000 galloli	s of residue	
1		
•		
Source No.: 5	Source Name: Contaminated	Source Waste Quantity (WQ) Calculations:
	Groundwater	
Source Description:		10 acre plume? x 4356 feet per acre x 10 foot of water?
	e Crackers sludge pond, Crackers	x .20 % pore space in aquifer = 10 x 43,560 x 10 x 0.2 =
•	s unlined waste water treatment	871,200 871,200 /67.5 = 12,906.67
plant		
·		
	·	

GENERAL INFORMATION (continued)

ource Description: Include des able 3-2), surface water (see HRS	scription of containment per pathway for ground water (see HRS Table 4-2), and air (see HRS Tables 6-3 and 6-9).
•	
tardous Waste Quantity (HW	Q) Calculation: SI Tables 1 and 2 (See HRS Tables 2-5, 2-6
Multiple Source	
107	
963	
3 <u>λ</u>	
10 7	
12,906.67	
14,115.67	710,000 but < I million
ch additional pages, if necessary	HWQ= 10,000

SI TABLE 1: HAZARDOUS WASTE QUANTITY (HWQ) SCORES FOR SINGLE SOURCE SITES

			gle Source Sites ined HWQ scores)				
(Column 1)	(Column 2)	(Column 3)	(Column 4)				
TIER	Source Type	HWQ = 10	HWQ = 100				
A Hezerdous Constituent Quantity	N/A	HWQ = 1 if Hazardous Constituent Quantity data are complete HWQ = 10 if Hazardous Constituent Quantity data are not complete	>100 to 10,000 lbs				
B Hazerdous Westestream Quentity	N/A	'≤ 500,000 lbs	>500,000 to 50 million lbs				
	Landfill	≤ 6.75 million ft ³ ≤ 250,000 yd ³	>6.75 million to 675 million ft ³ >250,000 to 25 million yd ³				
	Surface impoundment	≤6,750 ft ³ ≤250 yd ³	>6,750 to 675,000 ft ³ >250 to 25,000 yd ³				
	Drums	≤1,000 drums	>1,000 to 100,000 drums				
C Volume	Tanks and non-drum containers	≤50,000 gallons	>50,000 to 5 million gallons				
	Contaminated soil	≤6.75 million ft ³ ≤250,000 yd ³	>6.75 million to 675 million ft ³ >250,000 to 25 million yd ³				
	Pile	≤6,750 ft ³ ≤250 yd ³	>6,750 to 675,000 ft ³ >250 to 25,000 yd ³				
	Other	≤6,750 ft ³ ≤250 yd ³	>6,750 to 675,000 ft ³ >250 to 25,000 yd ³				
	Landfill	≤340,000 ft² ≤7.8 acres	>340,000 to 34 million ft ² >7.8 to 780 acres				
D	Surface impoundment	≤1,300 ft ² ≤0.029 acres	>1,300 to 130,000 ft ² >0.029 to 2.9 acres				
Area	Contaminated soil	≤3.4 million ft ² ≤78 acres	> 3.4 million to 340 million ft ² > 78 to 7,800 acres				
	Pile •	≤1,300 ft ² ≤0.029 a cres	>1,300 to 130,000 ft ² >0.029 to 2.9 acres				
	Land treatment	≤27,000 ft ² ≤0.62 acres	>27,000 to 2.7 million ft ² >0.62 to 62 acres				

TABLE 1 (CONTINUED)

Single Source (assigned HWQ		Multiple Source Sites	7	
(Column 5) HWQ = 10,000	(Column 6) HWQ = 1,000,000	(Column 7) Divisors for Assigning Source WQ Values	(Column 2) Source Type	(Column 1)
>10,000 to 1 million lbs	> 1 million los	lbs + 1	N/A	A Hezardous Constituent Quantity
>50 million to 5 billion lbs	> 5 billion lbs	ibs + 5,000	N/A	B Hazardous Wastestream Quantity
>675 million to 67.5 billion ft ³ >25 million to 2.5 billion yd ³ >675,000 to 67.5 million ft ³ >25,000 to 2.5 million yd ³	> 67.5 billion ft ³ > 2.5 billion yd ³ > 67.5 million ft ³ > 2.5 million yd ³	ft ³ + 67,500 yd ³ + 2,500 ft ³ + 67.5 yd ³ + 2.5	Landfill Surface	
>100,000 to 10 million drums >5 million to 500 million gallons >675 million to 67.5 billion ft ³ >25 million to 2.5 billion yd ³ >675,000 to 67.5 million ft ³	> 10 million drums > 500 million gallons > 67.5 billion ft ³ > 2.5 billion yd ³ > 67.5 million ft ³	drums + 10 gallons + 500 ft ³ + 67,500 yd ³ + 2,500 ft ³ + 67.5	Impoundment Drums Tanks and non-drum containers Contaminated Soil	C Volume
>25,000 to 2.5 million yd ³ >675,000 to 67.5 million tt ³ >25,000 to 2.5 million yd ³	> 2.5 million yd ³ > 67.5 million ft ³ > 2.5 million yd ³	yd ³ + 2.5 tt ³ + 67.5 yd ³ + 2.5	Pile Other	
>34 million to 3.4 billion ft ² >780 to 78,000 acres >130,000 to 13 million ft ² >2.9 to 290 acres > 340 million to 34 billion ft ²	> 3.4 billion ft ² >78,000 acres > 13 million ft ² > 290 acres > 34 billion ft ²	ft ² + 3,400 acres + 0.078 ft ² + 13 acres + 0.00029 ft ² + 34,000	Landfill Surface Impoundment	D
> 7,800 to 780,000 acres > 130,000 to 13 million ft ² > 2.9 to 290 acres	> 780,000 acres > 13 million ft ² > 290 acres	acres + 0.78 ft ² + 13 acres + 0.00029	Contaminated Soil Pile	
>2.7 million to 270 million ft ² >62 to 6,200 acres	> 270 million ft ² > 6,200 acres	ft ² + 270 acres + 0.0062	Land Treatment	

HAZARDOUS WASTE QUANTITY (HWQ) CALCULATION

For each migration pathway, evaluate HWQ associated with sources that are available (i.e., incompletely contained) to migrate to that pathway. (Note: If Actual Contamination Targets exist for ground water, surface water, or air migration pathways, assign the calculated HWQ score or 100, whichever is greater, as the HWQ score for that pathway.) For each source, evaluate HWQ for one or more of the four tiers (SI Table 1; HRS Table 2-5) for which data exist: constituent quantity, wastestream quantity, source volume, and source area. Select the tier that gives the highest value as the source HWQ. Select the source volume HWQ rather than source area HWQ if data for both tiers are available.

Column 1 of SI Table 1 indicates the quantity tier. Column 2 lists source types for the four tiers. Columns 3, 4, 5, and 6 provide ranges of waste amount for sites with only one source, corresponding to HWO scores at the tops of the columns. Column 7 provides formulas to obtain source waste quantity values at sites with multiple sources.

- 1. -Identify each source type.
- 2. Examine all waste quantity data available for each source. Record constituent quantity and waste stream mass or volume. Record dimensions of each source.
- 3. Convert source measurements to appropriate units for each tier to be evaluated.
- 4. For each source, use the formulas in the last column of SI Table 1 to determine the waste quantity value for each tier that can be evaluated. Use the waste quantity value obtained from the highest tier as the quantity value for the source.
- 5. Sum the values assigned to each source to determine the total site waste quantity.
- 6. Assign HWQ score from SI Table 2 (HRS Table 2-6).

Note these exceptions to evaluate soil exposure pathway HWQ (see HRS Table 5-2):

- The divisor for the area (square feet) of a landfill is 34,000.
- The divisor for the area (square feet) of a pile is 34.
- Wet surface impoundments and tanks and non-drum containers are the only sources for which volume measurements are evaluated for the soil exposure pathway.

	SI TABLE 2: HWQ	SCORES FOR SITES
	Site WQ Total	HWQ Score
	0	0
	1ª to 100	1b
,	> 100 to 10.000	100
	> 10,000 to 1 million	10,000
	> 1 million	1,000,000

- a If the WQ total is between 0 and 1, round it to 1.
- b If the hazardous constituent quantity data are not complete, assign the score of 10.

Table 3

WASTE CHACTERIZATION WORK SHEET FOR CRACKER ASPHALT SITE

SOURCES;

REFERENCES: APPENDIX A & C IN NARRATIVE REPORT

1. MW-6 ADJACENT SITE

4. SEEP SAMPLES ADJACENT SITE

2. MW-11 ADJACENT SITE

3. MW-12 ADJACENT SITE

					· · ·					-	_					FOOD CH	ENV.		FOOD CH.	ENV.
1						1	1						FOOD CH	ENV.		TOX	TOX/			
	,								FOOD CH.	ENV.				-	TOX/	MOB/	MOB/	ECOTOX/	MOB/	MOB/
1			GW	GW			FOOD CH.	ENV.	TOX/PER	TOX/PER		ECOTOX/	PER/	PER/	MOB/	PER/	PER/	MOB/	PER/	PER/
SOURCE	SUBSTANCE	TOXICITY	• • •		PER	TOX/PER	BIOACC	BIOACC	BIOACC		ЕСОТОХ	PER	BIOACC	BIOACC	PER	BIOACC	BIOACC	PER	BIOACC	BIOACC
	Benzene	100					5000		2.00E+05				2.00E+05		40.00			40.00		2.00E+04
	Ethylbenzene	10		0.10			50	50		200	100			2000	0.04		2.00		20	
	Napthalene	1	0.01	0.01	0.40			500		200	1000						2.00			
<u> </u>	Styrene	10	0.01	0.10	0.40	4.00				200	100			2000	0.04		2.00			
	Toluene	10	0.01	0.10	0.40	4.00	50	50	200	200	100	40	2000	2000	0.04	2.00	2.00	0.40		20
3 (GW)	Xylene	1	0.01	0.01	0.40	0.40	50	50	20	20	100	40	2000	2000	4.00E-03	0.20	0.20	0.40	20	20
2 (GW)	Cumene	1000	0.01	10.00	0.40	400.00	500	500	2.00E+05	2.00E+05	100	40	2.00E+04	2.00E+04	4.00	2.00E+03	2.00E+03	0.40	200	200
4 (GW/SW)	Xylene	1	0.01	0.01	0.40	0.40	50	50	20	20	100	40	2000	2000	4.00E-03	0.20	0.20	0.40	20	20
4 (GW/SW)	Meth. Chlor.	10	1.00	10.00	0.40	4.00	5	5	20	20	1	0.40	2	2	4.00	20.00	20.00	0.40	2	2
4 (GW/SW)	Chloroform	100	1.00	100.00	0.40	40.00	5	5	200	200	10	4	20	20	40.00	200.00	200.00	4.00	20	20
4 (GW/SW)	Benzene	100	1.00	100.00	0.40	40.00	5000	500	2.00E+05	2.00E+04	100	40	2.00E+05	2.00E+04	40.00	2.00E+05	2.00E+04	40.00	2.00E+05	2.00E+04
4 (GW/SW)	Ethylbenzene	10	0.01	0.10	0.40	4.00	50	50	200	200	100	40	2000	2000	0.04	2.00	2.00	0.40		20
4 (GW/SW)	Toluene	10	0.01	0.10	0.40	4.00	50	50	200	200	100	40	2000	2000	0.04	2.00	2.00	0.40	20	20
4 (GW/SW)	Styrene	10	0.01	0.10	0.40	4.00	50	50	200	200	100	40	2000	2000	0.04	2.00	2.00	0.40	20	20
	A STATE OF LABOUR DESIGNATION OF LINES		THE RES						THE PERSON NAMED IN		211111	ALC: N	ALCOHOL:	海里的社会公		THE REAL PROPERTY.		The Party		
SE NORTH												the second second	أعلدته سيحكث ومسيسيتها		THE RES	3.5				12.00
											-									
																				A STATE OF
				[]													¥			
													-				1			
ALC: US AND			A Comment of the Comm									1								
建設別數		20.00								STREET, STREET										
新新新教	TOTAL SERVICE												HEALTH			100 CO 10			G -2;	-
表面给证的	2 2 1							THE REAL PROPERTY.		Dist. Dist.	Parameter 1	107.000	PROPERTY.			16 (10)		7	200	

SI TABLE 3: WASTE CHARACTERIZATION WORKSHEET

Site Name: _			?eferences
Sources:	•	•	
1	4.		7
2	5.		B
3	6.		9

ſ						SURFACE WATER PATHWAY										
	SOURCE	HAZARDOUS SUBSTANCE	TOXICITY	GRO WA' PATH	rea		OVE	RLAND/I	FLOOD	MIGRAT	ION	İ	GROUND WATER TO SURFACE WATER			
C-1				GW Mobility (HRS Table 3-8)	Tox/ Mobility Value (HRS Table 3-9)	Per (HRS Tables 4-10 and 4-11)	Tox/Per Value (HRS Table 4-12)	Blosc Pot. (HRS Table 4-15)	Tox/ Pers/ Bloac Value (HRS- Table 4-16)	Econor- (HRS Table 4-19)	Ecolox/ Pers (HRS Table 4-20)	Ecoton/ Pers/ Bioacc Value (HRS Table 4-21)	Tox/ Mob/ Pers Value (HRS Table 4-26)	Tow/ Mob/ Pers/ Bioscc Value (HRS Table 4-28)	Ecotox/ Mob/ Pers Value (HRS Table 4-29)	Ecotox/ Mob/ Per/ Bloacc Value (IRS Table 4-30)
-							<u></u> -									
		i														
	· · · · · · · · · · · · · · · · · · ·		<u> </u>									<u> </u>	·			
		 			<u> </u>									-		
																·
	<u> </u>			ļ		ļ							·			
		 	 	 						 			 		-	
				<u></u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>				<u> </u>	

Ground Water Observed Release Substances Summary Table

On SI Table 4, list the hazardous substances associated with the site detected in ground water samples for that aquifer. Include only those substances directly observed or with concentrations significantly greater than background levels. Obtain toxicity values from the Superfund Chemical Data Matrix (SCDM). Assign mobility a value of 1 for all observed release substances regardless of the aquifer being evaluated. For each substance, multiply the toxicity by the mobility to obtain the toxicity/mobility factor value; enter the highest toxicity/mobility value for the aquifer in the space provided.

Ground Water Actual Contamination Targets Summary Table

If there is an observed release at a drinking water well, enter each hazardous substance meeting the requirements for an observed release by well and sample ID on SI Table 5 and record the detected concentration. Obtain benchmark, cancer risk, and reference dose concentrations from SCDM. For MCL and MCLG benchmarks, determine the highest percentage of benchmark obtained for any substance. For cancer risk and reference dose, sum the percentages for the substances listed. If benchmark, cancer risk, or reference dose concentrations are not available for a particular substance, enter N/A for the percentage. If the highest benchmark percentage or the percentage sum calculated for cancer risk or reference dose equals or exceeds 100%, evaluate the population using the well as a Level I target. If these percentages are less than 100% or all are N/A, evaluate the population using the well as a Level II target for that aquifer.

TABLE 4: GROUND WATER OBSERVED RELEASE (BY AQUIFER)

SAMPLE	HAZARDOUS		TOXICITY/	
ID	SUBSTANCE	CONC.	MOBILITY	REFERENCES
1 (GW)	Benzene		100.00	see Narrative Report Appendices
2 (GW)	Ethylbenzene		0.10	see Narrative Report Appendices
1 (GW)	Napthalene		0.01	see Narrative Report Appendices
2 (GW)	Styrene		0.10	see Narrative Report Appendices
2 (GW)	Toluene		0.10	see Narrative Report Appendices
3 (GW)	Xylene		0.01	see Narrative Report Appendices
2 (GW)	Cumene		10,00	see Narrative Report Appendices
High	est Toxicity/Mob	ility	100.00	

TABLE 5: GROUND WATER ACTUAL CONTAMINATION TARGETS

NO DATA AVAILABLE

	I TABLE 4:	GROUND WATER			UBSTANCE	S (BY AQUI	ER)	•	
_	Sample ID	Hazardous Substance	Bckgrd. Conc.	Toxicity/ Mobility	References		•	٠	
						•			
_		Highest To	xicity/Mobility						
		GROUND WATER							
1	Well ID:			Level I	Level II	_ Population Se	rved	Reference:	9
	Sample ID	Hazardous Substance	Conc.	Benchmark Conc. (MCL or MCLG)	% of Benchmark	Cancer Risk - Conc.	% of Cancer Risk Conc.	RfD	% of RID
ļ									
L		<u> </u>	.L	Highest Percent		Sum of Percents		Sum of Percents	
	Well ID:	· · · · · · · · · · · · · · · · · · ·		Level I	Level II	_ Population Se	rved	Reference	s
	Sample ID	Hazardous Substance	Conc. (µg/L)	Benchmark Conc. (MCL or MCLG)	% of Benchmark	Cancer Risk Conc.	% of Cancer Risk Conc.	RfD	% of RfD
l		<u>. I </u>	,	Highest Percent		Sum of Percents		Sum of Percents	

GROUND WATER

Hydrogeology

The CAF site and the surrounding area lie within the Alluvial-Deltic Plain district of the East Gulf Coastal Plain physiographic section. The prominent physiographic feature of this area is the broad, well developed, flat flood plains and terraces that have been formed by the meandering Black Warrior River. (Reference 5, p. 3)

The geologic units that outcrop in Moundville and the surrounding area are of sedimentary origin and consist of gravel, sand, silt and clay (Reference 6, p. 3-4). At the CAF site, alluvium and terrace deposits of Quaternary age overlie the Cretaceous age Gordo and Coker formations of the Tuscaloosa Group (Reference 5, p. 6-8).

The Quaternary flood plain deposits can be as much as 100 feet thick, and consist mainly of gravel, sand, silt and clay (Reference 7, p. 12). The Gordo Formation, which lies beneath the flood plain deposits, is as much as 400 feet thick, and consist of sand and gravel overlain by alternating lenticular beds of sand and mottled clay (Reference 5, p. 6-8 and 21). The Coker formation, which lies beneath the Gordo Formation, ranges in thickness from less than 100 feet to up to 1,000 feet. The Coker Formation consists of a nonmarine zone of gravel overlain by marine sand and clay. The nonmarine basal zone is generally separated from the marine sand beds by 50 feet or more of clay (Reference 5, p. 8).

Sand and gravel beds of the Tuscaloosa Group are the major sources of ground water in the study area. Alluvium and terrace deposits may also contain sand and gravel aquifers that are capable of yielding enough water for a private domestic or stock supply. (Reference 5, p. 12-15)

According to the outcrops along the river bank north of the site (Figure 4) and the bore hole logs from the property west of the site (Attachment 6), the terrace deposits consist of an upper fine-grained unit and a basal coarse-grained unit that lies unconformably atop the eroded remnants of the Gordo Formation. The base of the terrace deposits is considered to be the lowest occurrence of gravel.

The Gordo Formation, as seen in the bore hole logs (Attachment 6), consist of an upper unit of sand having zones of high iron content intermingled with layers of sandy clay and clayey sand and a basal unit of fine to medium sand. The contact between the Gordo Formation and the Coker Formation, as seen in the outcrops along the river bank, is a 1/2 inch layer of iron cemented sandstone underlain by massive red, purple, gray and brown mottled clay.

The terrace and Gordo deposits thicken in a westward direction and are estimated to 35 to 120 feet in thickness underneath the CAF site.

Ground Water Targets

There are many private wells and two public water supply wells within the 4-mile ground water target radius (Attachment 1; Attachment 2; Plate 1). The water from the two public water supply wells are blended together to make up 100 percent of the Moundville Water Works system. The Moundville Water Works has 1,348 connections on its system. The Moundville Water Works also sells 300,000 gallons of water per day to the Hale County Water System (Reference 8).

The Hale County Water System purchases 40 percent of its systems water from Moundville Water Works and 60 percent from Greensboro Water System. The water that the Hale County Water System buys is blended together before it is used by 2,500 purchasers. (PA # 6243, Att. 5 & 6)

GROUND WATER PATHWAY GROUND WATER USE DESCRIPTION

		<u> </u>				
					·	
				-		
						
•						
	-· - <u>-</u>					
		•				
						
		_			·	
w Calculationide apportioning average ni	ons of Ground ment calculation umber of perso	d Water Drin is for blended s ins per househ	iking Water supply system nold: 2.635	Populations s. Reference	for each A	Aquifer:
w Calculationide apportioning average ru	ons of Ground nent calculation umber of perso	d Water Drin is for blended s ins per househ	king Water supply system nold: 2.625	Populations s. Reference	for each A	Aquifer:
w Calculationide apportioning average na	ons of Ground nent calculation umber of perso	d Water Drin is for blended s ins per househ	iking Water supply system hold: 2.685	Populations s. Reference	for each A	Aquifer:
w Calculationide apportioning average no	ns of Ground nent calculation umber of perso	d Water Drin is for blended : ins per househ	iking Water supply system hold: _2.625	Populations s. Reference	for each A	Aquifer:
w Calculationide apportioning average na	ons of Ground nent calculation umber of perso	d Water Drin is for blended s ins per househ	supply systemed in the system of the system	Populations s. Reference	for each A	Aquifer:
w Calculationide apportioning average ni	ens of Ground nent calculation umber of perso	d Water Drin is for blended s ins per househ	supply system noid: <u>2.635</u>	s. Reference	for each A	Aquifer:
ide apportionn nty average ni	nent calculation umber of perso	is for blended : ins per househ	supply system nold: <u>구.6공기</u>	s. Reference	3	Aquifer:
ide apportionn nty average ni	nent calculation umber of perso	is for blended : ins per househ	supply system noid: <u>2.635</u>	s. Reference	3	Aquifer:
ide apportionn nty average ni	nent calculation umber of perso	is for blended : ins per househ	supply system nold: <u>구.6공기</u>	s. Reference	. 3	-
ide apportionn nty average ni	nent calculation umber of perso	is for blended : ins per househ	supply system nold: <u>구.6공기</u>	s. Reference	3	-
ide apportionn nty average ni	nent calculation umber of perso	is for blended : ins per househ	supply system noid: <u>2.635</u>	s. Reference	. 3	-

GROUND WATER PATHWAY WORKSHEET

LWELLIARD OF SELENCE	0	Data	. .
LIKELIHOOD OF RELEASE	Score	Type	Refs
OBSERVED RELEASE: If sampling data or direct observation	1_	1	ì
support a release to the aquifer, assign a score of 550. Record	550	1	Aso. A
observed release substances on SI Table 4.	1000	 -	744. 7
2. POTENTIAL TO RELEASE: Depth to aquiter:feet. If sampling data do not support a release to the aquifer, and the site is		•	'
in karst terrain or the depth to aquiler is 70 feet or less, assign a	S		
score of 500; otherwise, assign a score of 340. Optionally,	_		
evaluate potential to release according to HRS Section 3.			_
LR :	550		
Gr	13.50	1	
TARGETS	•		
Are any wells part of a blended system? Yes_ V No			
If yes, attach a page to show apportionment calculations.			
, , , , , , , , , , , , , , , , , , ,	}		- 1
3. ACTUAL CONTAMINATION TARGETS: If analytical evidence			1
indicates that any target drinking water well for the aquifer has been	.[- [ſ
exposed to a hazardous substance from the site, evaluate the			I
factor score for the number of people served (SI Table 5).			. [
40	1	Í	
Level I: people x 10 =	_		
Level II: people x 1 = Total =			- 1
4. POTENTIAL CONTAMINATION TARGETS: Determine the number			
of people served by drinking water wells for the aguifer or overlying		1	Ref. 1
aquifers that are not exposed to a hazardous substance from the		ŀ	ಗಲ್ <u>-</u>
site; record the population for each distance category in SI Table 6a	136	- 1	202
or 6b. Sum the population values and multiply by 0.1.	$ \cup \psi $	[Ref.3
5. NEAREST WELL: Assign a score of 50 for any Level I Actual			
Contamination Targets for the aquifer or overlying aquifer. Assign a	1	- 1	ľ
score of 45 if there are Level II targets but no Level I targets. If no	1 _ 1	1	l l
Actual Contamination Targets exist, assign the Nearest Well score	1 5 1	l	Ref. 8
from SI Table 6a or 6b. If no drinking water wells exist within 4 miles,		1	1167.0
assign 0.			
6. WELLHEAD PROTECTION AREA (WHPA): If any source lies	l	İ	ŀ
within or above a WHPA for the aquifer, or if a ground water	-	- 1	ا ـ ، ـ ا
observed release has occurred within a WHPA, assign a score of 20; assign 5 if neither condition applies but a WHPA is within 4	15		Rd. 8
miles: otherwise assign 0.		į'	,
7. RESOURCES: Assign a score of 5 if one or more ground water	 		
resource applies; assign 0 if none applies.	l		ŀ
., .	1	l	, , , 1
 Imigation (5 acre minimum) of commercial food crops or 	1	ŀ	A+1:'}
commercial forage crops	į į	i	1
Watering of commercial livestock		l :	0 05
Ingredient in commercial food preparation	1 5	1	Nd'5
Supply for commercial aquaculture Supply for commercial aquaculture		1	1
Supply for a major or designated water recreation area, weekeding despiting winter too.	[İ	ļ
excluding drinking water use	1 1	}	1
August 1997			
Sum of Targets T=			

SI TABLE 6 (From HRS TABLE 3-12): VALUES FOR POTENTIAL CONTAMINATION GROUND WATER TARGET POPULATIONS

SI Table 6a: Other Than Karst Aquifers

Γ								Populat	on Serve	d by Wel	s within Di	stance Cat	egory				
	Distance from Site	Рор.	Nearest Well (choose highest)	1 to 10	11 to 30	31 to 100	101 to 300	301 to 1000	1001 to 3000	3001 to 10,000	10,001 to 30,000	30,001 to 100,000	100,001 to 300,000	300,001 to 1,000,000	1,000,000 to 3,000,000	Pop. Value	Ref.
ſ	$0 \text{ to } \frac{1}{4} \text{ mile}$	-	20	4	17	53	164	522	1,633	5,214	16,325	52,137	163,246	521,360	1,632,455		
	$>\frac{1}{4}$ to $\frac{1}{2}$ mile	_	18	2	11	33	102	324	1,013	3,233	10,122	32,325	101,213	323,243	1,012,122		
o l	$>\frac{1}{2}$ to 1		9	1	· 5	17	52	167	523	1,669	5,224	16,684	52,239	166,835	522,385		
-16	> 1 to 2 miles	3,220	5	0.7	3	10	30	94	294	939	2,939	9,385	29,384	93,845	293,842	939	h& 1 N&3
	> 2 to 3 miles	_	3	0.5	2	7	21	68	212	678	2,122	6,778	21,222	67,777	212,219		
	>3 to 4 miles	3,2,20	2	0,3	1	4	13	42	131	417	1,306	4,171	13,060	41,709	130,596	417	hef 1 A.f.3
•	Nearest	Well =	5												Sum =	1356	

SI TABLE 6 (From HRS TABLE 3-12): VALUES FOR POTENTIAL CONTAMINATION GROUND WATER TARGET POPULATIONS (continued)

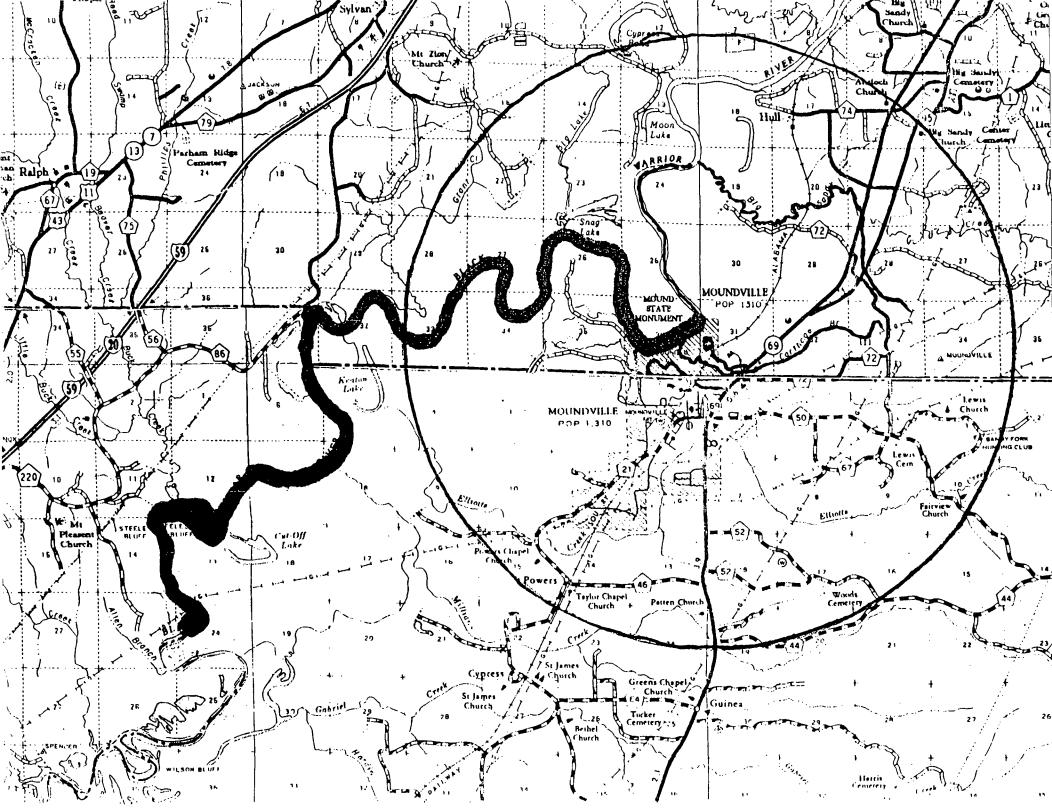
SI Table 6b: Karst Aquifers

ſ								Populat	on Serve	d by Wel	ls within Di	stance Cat	egory				
	Distance from Site	Рор.	Nearest Well (choose highest)	1 to 10	11 to 30	31 to 100	101 10 300	301 to 1000	1001 to 3000	3001 to 10,000	10,001 to 30,000	30,001 to 100,000	100,001 to 300,000	300,001 to 1,000,000	1,000,000 to 3,000,000	Pop. Value	Ref.
Ī	0 to $\frac{1}{4}$ mile		20	4	17	53	164	522	1,633	5,214	16,325	52,137	163,246	521,360	1,632,455		
	$>\frac{1}{4}$ to $\frac{1}{2}$ mile		20	2	11	33	102	324	1,013	3,233	10,122	32,325	101,213	323,243	1,012,122		
Ç	$>\frac{1}{2}$ to 1 · mile		20	2	9	26	82	261	817	2,607	8,163	26,068	81,623	260,680	816,227		·
-17	> 1 to 2 miles		20	2	9	26	82	261	817	2,607	8,163	26,068	81,623	260,680	816,227		
	> 2 to 3 miles		20	2	9	26	82	261	817	2,607	8,163	26,068	81,623	260,680	816,227		
	>3 to 4 miles		20	2	9	26	82	261	817	2,607	8,163	26,068	81,823	260,680	816,227		
,	Nearest	Weil =													Sum =		

GROUND WATER PATHWAY WORKSHEET (concluded)

WA	STE CHARACTERISTICS	Score	Data Type	Does not Apply
8.	If any Actual Contamination Targets exist for the aquifer or overlying aquifers, assign the calculated hazardous waste quantity score or a score of 100, whichever is greater; if no Actual Contamination Targets exist, assign the hazardous waste quantity score calculated for sources available to migrate to ground water. Data on Manifoling Wells Only	10,000	49. 4 49. B	
9.	Assign the highest ground water toxicity/mobility value from SI Table 3 or 4.	100	Table4	
10.	Multiply the ground water toxicity/mobility and hazardous waste quantity scores. Assign the Waste Characteristics score from the table below: (from HRS Table 2-7) Product WC Score 0 0 0			
	10,000 to <1E + 05 1E + 05 to <1E + 06 1E + 06 to <1E + 07 1E + 07 to <1E + 08 1E + 08 or greater 100	32	+	
	wc =	32		

Multiply LR by T and by WC. Divide the product by 82,500 to obtain the ground water pathway score for each aquifer. Select the highest aquifer score. If the pathway score is greater than 100, assign 100.


GROUND WATER PATHWAY SCORE:

LR X T X WC 82.500 32.21

(Maximum of 100)

SURFACE WATER PATHWAY

Sketch of the Surface Water Migration Route: Label all surface water bodies. Include runoff route and drainage direction, probable point of entry, and 15-mile target distance limit. Mark sample locations, intakes, fisheries, and sensitive environments. Indicate flow directions, tidal influence, and rate.								
	·							
•								
	·							
•								
	·							
	Ì							

SURFACE WATER PATHWAY

Surface Water Observed Release Substances Summary Table

On SI Table 7, list the hazardous substances detected in surface water samples for the watershed, which can be attributed to the site. Include only those substances in observed releases (direct observation) or with concentration levels significantly above background levels. Obtain toxicity, persistence, bioaccumulation potential, and ecotoxicity values from SCDM. Enter the highest toxicity/persistence, toxicity/persistence/bioaccumulation, and ecotoxicity/persistence/ecobioaccumulation values in the spaces provided.

- TP = Toxicity x Persistence
- TPB = TP x bioaccumulation
- ETPB = EP x bioaccumulation (EP = ecotoxicity x persistence)

Drinking Water Actual Contamination Targets Summary Table

For an observed release at or beyond a drinking water intake, on SI Table 8 enter each hazardous substance by sample ID and the detected concentration. For surface water sediment samples detecting a hazardous substance at or beyond an intake, evaluate the intake as Level II contamination. Obtain benchmark, cancer risk, and reference dose concentrations for each substance from SCDM. For MCL and MCLG benchmarks, determine the highest percentage of benchmark obtained for any substance. For cancer risk and reference dose, sum the percentages of the substances listed. If benchmark, cancer risk, or reference dose concentrations are not available for a particular substance, enter N/A for the percentage. If the highest benchmark percentage or the percentage sum calculated for cancer risk or reference dose equals or exceeds 100%, evaluate the population served by the intake as a Level I target. If the percentages are less than 100% or all are N/A, evaluate the population served by the intake as a Level II target.

TABLE 7: SURFACE WATER OBSERVED RELEASE SUBSTANCES

				Food Chain	Env.	Food Chain	Env.	
				Toxicity/	Toxicity/	Ecotoxicity/	Ecotoxicity/	
SAMPLE	HAZARDOUS	CONC.	Toxicity	Persis.	Persis.	Persis./	Persis./	
ID	SUBSTANCE	ppb	Persistence	Bioaccum	Bioaccum	Ecobioaccum	Ecobioaccum	REFERENCES
4 (GW/SW)	Xylene	320	0.4	20	20	2000	2000	see Narrative Report Appendices
4 (GW/SW)	Meth. Chlor.	7.5	4	20	20	2	2	see Narrative Report Appendices
4 (GW/SW)	Chloroform	4.7	40	200	200	20	20	see Narrative Report Appendices
4 (GW/SW)	Benzene	150	40	2.00E+05	2.00E+04	2.00E+05	2.00E+04	see Narrative Report Appendices
4 (GW/SW)	Ethylbenzene	54	4	200	200	2000	2000	see Narrative Report Appendices
4 (GW/SW)	Toluene	28	4	200	200	2000		see Narrative Report Appendices
4 (GW/SW)	Styrene	37	4	200	200	2000	2000	see Narrative Report Appendices
	Highest Values		40	2.00E+05	2.00E+04	2.00E+05	2.00E+04	

TABLE 8: SURFACE WATER DRINKING WATER ACTUAL CONTAMINATION TARGETS

NO INTAKES WITHIN 15 MILES OF SITE

SI TABLE 7:	SURFACE WATER	OBSERV	ED RELEASE	SUBSTAN	CES			
Cample ID	Normalism Cultura	Bckgrd.	Toxicity/	Toxicity/ Persis./	Ecotoxicity/ Persis/			
Sample ID	Hazardous Substance	Conc.	Persistence	Bioaccum	Ecobioaccum	References		
								
				<u>-</u>				
								· •
	Hi	ghest Values						
SI TABLE 8:	SURFACE WATER	DRINKING	WATER ACT	TUAL CON	TAMINATION	TARGETS		
Intake ID:	Sample Type		Lev	/el I	Level II	Population Serve	dRefere	nces
		Ī .	Benchmark					
Sample ID	Hazardous Substance	Conc. (µg/L)	Conc. (MCL or MCLG)	% of Benchmark	Cancer Risk Conc.	% of Cancer Risk Conc.	RfD	% of RID
								
	<u> </u>		Highest Percent		Sum of Percents		Sum of Percents	
Intake ID:	Sample Type		Le	vel I	Level 11	Population Serve	dRefere	nces
	1	Cons	Benchmark Conc.	% of	Cancer Risk	% of Cancer		<u> </u>
Sample ID	Hazardous Substance	Conc. (jig/L)	(MCL or MCLG)			Risk Conc.	RID	% of RfD
								
				<u> </u>				
l	_!	.L	Highest Percent	 	Sum of Percents	 	Sum of Percents	

SURFACE WATER PATHWAY LIKELIHOOD OF RELEASE AND DRINKING WATER THREAT WORKSHEET

	KELIHOOD OF RELEASE- VERLAND/FLOOD MIGRATION		Score	Data Type	Refs
1.	OBSERVED RELEASE: If sampling data or direct support a release to surface water in the watershe of 550. Record observed release substances on	ed, assign a score	550	+	MP.C A44.7
2.	POTENTIAL TO RELEASE: Distance to surface if sampling data do not support a release to surface watershed, use the table below to assign a score below based on distance to surface water and flo	re water in the from the table			
l	Distance to surface water <2500 feet	500	1		i
	Distance to surface water >2500 feet, and:		i ·	I	
•	Site in annual or 10-yr floodplain	500	·	1	}
	Site in 100-yr floodplain	400			1
	Site in 500-yr floodplain	300		1	}
	Site outside 500-yr floodplain	100			
<u>.</u>	Optionally, evaluate surface water potential to release according to HRS Section 4.1.2.1.2	ease LR =	550		
		Fu =	500	2	
	CELIHOOD OF RELEASE Ound water to surface water mig	RATION	S∞re	Data Type	Refs
1.	OBSERVED RELEASE: If sampling data or direct support a release to surface water in the watershe of 550. Record observed release substances on 3	d, assign a score			4-0
NO	TE: Evaluate ground water to surface water migrati surface water body that meets all of the following or surface water body that meets all of the following or surface water body that meets all of the following or surface water body that meets all of the following or surface water body that meets all of the following or surface water body that meets all of the following or surface water body that meets all of the following or surface water body that meets all of the following or surface water body that meets all of the following or surface water body that meets all of the following or surface water body that meets all of the following or surface water body that meets all of the following or surface water body that meets all of the following or surface water body the surface water				ا ۱۹۹۰
1)	A portion of the surface water is within 1 mile of sit a containment factor greater than 0.	e sources having		+	
•	No aquifer discontinuity is established between the above portion of the surface water body.	ļ			
3)	The top of the uppermost aquifer is at or above the surface water.	e bottom of the	550		

POTENTIAL TO RELEASE: Use the ground water potential to release. Optionally, evaluate surface water potential to release according to HRS Section 3.1.2.

LR = 550

Elevation of top of uppermost aquifer Elevation of bottom of surface water body

SURFACE WATER PATHWAY LIKELIHOOD OF RELEASE AND DRINKING WATER THREAT WORKSHEET (CONTINUED)

DRINKING WATER THREAT TARGETS	Score	Data Type	Rets
Record the water body type, flow, and number of people served by each drinking water intake within the target distance limit in the watershed. If there is no drinking water intake within the target distance limit, assign 0 to factors 3, 4, and 5.			
Intake Name Water Body Type Flow People Served			
Are any intakes part of a blended system? Yes No No If yes, attach a page to show apportionment calculations.			
ACTUAL CONTAMINATION TARGETS: If analytical evidence indicates a drinking water intake has been exposed to a hazardous substance from the site, list the intake name and evaluate the factor score for the drinking water population (SI Table 8).		+	Met.3
Level I: people x 10 = Total =	0		
 POTENTIAL CONTAMINATION TARGETS: Determine the number of people served by drinking water intakes for the watershed that have not been exposed to a hazardous substance from the site. Assign the population values from SI Table 9. Sum the values and multiply by 0.1. 	0	+	het.8
5. NEAREST INTAKE: Assign a score of 50 for any Level I Actual Contamination Drinking Water Targets for the watershed. Assign a score of 45 if there are Level II targets for the watershed, but no Level I targets. If no Actual Contamination Drinking Water Targets exist, assign a score for the intake nearest the PPE from SI Table 9. If no drinking water intakes exist, assign 0.	0	+	ilel.3
6. RESOURCES: Assign a score of 5 if one or more surface water resource applies; assign 0 if none applies. • Imigation (5 acre minimum) of commercial food crops or commercial forage crops • Watering of commercial livestock • Ingredient in commercial food preparation • Major or designated water recreation area, excluding drinking water use	5		R8.11
SUM OF TARGETS T=	5		J

SI TABLE 9 (From HRS Table 4-14): DILUTION-WEIGHTED POPULATION VALUES FOR POTENTIAL CONTAMINATION FOR SURFACE WATER MIGRATION PATHWAY

		,	Number of people							j		
Type of Surface Water Body	Pop.	Nearest Intake	0	1 10 10	11 10 30	31 to 100	101 to 300	to	1,001 to 3,000	to	10,001 to 30,000	Pop. Value
Minimal Stream (<10 cfs)		20	0	4	17	53	164	522	1,633	5,214	16,325	
Small to moderate stream (10 to 100 cfs)		2	0	0.4	2	5	16	/52	163	521	1,633	
Moderate to large stream (> 100 to 1,000 cfs)		0	0	0.04	0.2	0.5	2	5	16	52	163	
Large Stream to river (>1,000 to 10,000 cfs)		0	0	0.004	0.02	0.05	0.2	0.5	2	5	16	
Large River (> 10,000 to 100,000 cfs)		0	0	0	0.002	0.005	0.02	0.05	0.2	0.5	16	
Very Large River (>100,000 cfs)		0	0	0	X	0.001	0.002	0.005	0.02	0.05	0.2	
Shallow ocean zone or Great Lake (depth < 20 feet)		0	0	0	0.002	0.005	0.02	0.05	0.2	ů.5	2	
Moderate ocean zone or Great Lake (Depth 20 to 200 feet)		. 0	6	0	0	0.001	0.002	0.005	0.02	0.05	0.2	
Deep ocean zone or Great Lake (depth > 200 feet)		0/	0	0	0	0	0.001	0.003	0.008	0.03	0.08	
3-mile mixing zone in quiet flowing river (≥ 10 cfs)		10	0	2	9	28	82	261	817	2,607	8,163	
Noarost fr	ntako =										Sum =	

No Sufface Water Intakes

SURFACE WATER PATHWAY

Human Food Chain Actual Contamination Targets Summary Table

On SI Table 10, list the hazardous substances detected in sediment, aqueous, sessile benthic organism tissue, or fish tissue samples (taken from fish caught within the boundaries of the observed release) by sample ID and concentration. Evaluate fisheries within the boundaries of observed releases detected by sediment or aqueous samples as Level II, if at least one observed release substance has a bioaccumulation potential factor value of 500 or greater (see SI Table 7). Obtain benchmark, cancer risk, and reference dose concentrations from SCDM. For FDAAL benchmarks, determine the highest percentage of benchmark obtained for any substance. For cancer risk and reference dose, sum the percentages for the substances listed. If benchmark, cancer risk, or reference dose concentrations are not available for a particular substance, enter N/A for the percentage. If the highest benchmark percentage sum calculated for cancer risk or reference dose equals or exceeds 100%, evaluate this portion of the fishery as subject to Level I concentrations. If the percentages are less than 100% or all are N/A-evaluate the fishery as a Level II target.

Sensitive Environment Actual Contamination Targets Summary Table

On SI Table 11, list each hazardous substance detected in aqueous or sediment samples at or beyond wetlands or a surface water sensitive environment by sample ID. Record the concentration. If contaminated sediments or tissues are detected at or beyond a sensitive environment, evaluate the sensitive environment as Level II. Obtain benchmark concentrations from SCDM. For AWQC/AALAC benchmarks, determine the highest percentage of benchmark of the substances detected in aqueous samples. If benchmark concentrations are not available for a particular substance, enter N/A for the percentage. If the highest benchmark percentage equals or exceeds 100%, evaluate that part of the sensitive environment subject to Level I concentrations. If the percentage is less than 100%, or all are N/A, evaluate the sensitive environment as Level II.

No Data

shery ID:	Sar	nple Type		Level	1	Level II	References	
Sample ID	Hazardous Substance	Conc. (mg/kg)	Benchmark Concentration (FDAAL)	% of Benchmark	Cancer Risk Concentration.	% of Cancer Risk Concentration	RfD	% of RID
			Highest Percent		Sum of Percents		Sum of Percents	
	1: SENSITIVE ENVI				ION TARGETS		RSHED Environment Value	·
Sample ID	Hazardous Substance	Conc (µg/L)	Benchmark Concentration (AWQC or AALAC)	% of Benchmark	References	-		
						•	•	
		· · · · · · · · · · · · · · · · · · ·	Highest Percent				•	
Environment (I	D: Sa	mple Type		Leve	11	Level II	Environment Value	·
Sample ID	Hazardous Substance	Conc (µg/L)	Benchmark Concentration (AWQC or AALAC)	% of Benchmark	References	· -		
						- - -		
			Highest	<u> </u>		<u>. </u>		

SURFACE WATER PATHWAY (continued) HUMAN FOOD CHAIN THREAT WORKSHEET

HUMAN FOOD CHAIN THREAT		Score	Type	Refs
Record the water body type and f target distance limit. If there is no distance limit, assign a score of 0	fishery within the target			
Fishery Name Warrier Water Body_	Kives Flow 100-1000 cfs			
Species Bros Broduction Species Carl Str. Production	n ?? lbs/yr			
Fishery Name Water Body	Flowcfs			
Species Production Species Production	lbs/yr			
Fishery Name Water Body	Flowcfs		}	
Species Production Species Production	lbs/yr			
 ACTUAL CONTAMINATION FISHI If analytical evidence indicates that a hazardous substance with a bioa or equal to 500 (SI Table 10), assigned Level I fishery. Assign 45 if there is I fishery. POTENTIAL CONTAMINATION FIRM there is a release of a substance greater than or equal to 500 to a work within the target distance limit, but if there is no observed release to the for potential contamination fisheries the lowest flow at all fisheries within 	t a fishery has been exposed to accumulation factor greater than in a score of 50 if there is a s a Level II fishery, but no Level SHERIES: with a bioaccumulation factor ratershed containing fisheries there are no Level I or Level II he watershed, assign a value is from the table below using		+	(able)
I awast Flow	FOLVolue	·	i	l
Lowest Flow	FCI Value			1
10 to 100 cfs	2	1	}	1
>100 cfs, coastal tidal waters,	1		• 1	1
oceans, or Great Lakes	0	[ļ	- 1
3-mile mixing zone in quiet	10			
flowing river				1
	FCI Value =	20		
•	SUM OF TARGETS T =	20		

SURFACE WATER PATHWAY (continued) ENVIRONMENTAL THREAT WORKSHEET

When measuring length of wetlands that are located on both sides of a surface water body, sum both frontage lengths. For a sensitive environment that is more than one type, assign a value for each type.

	RONMENTA	Score	Data Type	Refs					
se If t	cord the wat nsitive environ here is no se sign a score								
Environ	ment Name]							
	Wetland]	ļ						
Blace		Chiver	larg e	Stream Stream		<u>/_ /() </u>			
						cts			
]				 -		cts			
-								j	
			ON SENSITIVE E]		
env	rironment has	s been (exposed to a haz	ardous:	substan	; ce from the		1 . 1	
site	, record this	informat	ion on SI Table 1	1, and a	issign a f	factor	·		
Vall	re tor the env	vironme	nt (SI Tables 13 a	ana 14).			·		j
Environ	nent Name		ment Type and	Multiplic	er (10 for	Product			ł
	•	Value (SI Tables 13 & 14)	Level I. Level II	1 for }			! !	- 1
								1	
		, ,		X]	l
<u> </u>	/		1/279	*					İ
	T	$\bigcup \mathcal{U}$	P]]	ł
				×					i
				x			\bigcirc		
10 80	PENTIAL CO	NITABAIR	NATION SENSITI	VE ENI	/IBONIM	Sum =			
10. PO	I EN LIAL CO	IN I MIVILI	ANTION SENSITI	AC EIV		EN 13.			1
Flow	Dilution Weig (SI Table 12)	ht	Environment Type Value (SI Tables 1	and 13 & 14)	Pot. Cont.	Product			İ
1000 cts	0,01	×	methind De) x	0.1 =	0.5			املہ
	1					-			het2
U ^O cfs	}	X	nathand 25		0.1 =	2,5			
UC cls		x	wetlan (25	x	0.1 =	2.5			14.3
cts		x		x	0.1 =	_			
-4-					0.1 =		ا ہے ۔۔ ا		j
cts		X	<u> </u>		_U. =	Sum =	5.5		
							5.5		-
					•	T =	٠,٠	ł	

SI TABLE 12 (HRS Table 4-13): SURFACE WATER DILUTION WEIGHTS.

Type of Surface Water Body		Assigned Dilution Weight
Descriptor	Flow Characteristics	
Minimal stream	< 10 cfs	1
Small to moderate stream	10 to 100 cfs	0.1
Moderate to large stream	> 100 to 1,000 cfs	0.01
Large stream to river	> 1,000 to 10,000 cfs	0.001
Large river	> 10,000 to 100,000 cfs	0.0001
Very large river	> 100,000 cfs	0.00001
Coastal tidal waters	Flow not applicable; depth not applicable	0.001
Shallow ocean zone or Great Lake	Flow not applicable; depth less than 20 feet	0.001
Moderate depth ocean zone or Great Lake	Flow not applicable; depth 20 to 200 feet	0.0001
Deep ocean zone or Great Lake	Flow not applicable; depth greater than 200 feet	0.000005
3-mile mixing zone in quiet flowing river	10 cfs or greater	0.5

SI TABLE 13 (HRS TABLE 4-23): SURFACE WATER AND AIR SENSITIVE ENVIRONMENTS VALUES

	ASSIGNED
SENSITIVE ENVIRONMENT	VALUE
Critical habitat for Federal designated endangered or threatened species	100
Marine Sanctuary	· ·
National Park	l
Designated Federal Wilderness Area	
Ecologically important areas identified under the Coastal Zone Wilderness Act	
Sensitive Areas identified under the National Estuary Program or Near Coastal	
Water Program of the Clean Water Act	
Critical Areas identified under the Clean Lakes Program of the Clean Water Act	
(subareas in lakes or entire small lakes)	Į.
National Monument (air pathway only)	
National Seashore Recreation Area	
National Lakeshore Recreation Area	
Habitat known to be used by Federal designated or proposed endangered or threatened species	75
National Preserve	!
National or State Wildlife Refuge	1
Unit of Coastal Barrier Resources System	
Coastal Barner (undeveloped)	
Federal land designated for the protection of natural ecosystems	
Administratively Proposed Federal Wilderness Area	
Spawning areas critical for the maintenance of fish/shellfish species within a	
river system, bay, or estuary	1
Migratory pathways and feeding areas critical for the maintenance of]
anadromous fish species within river reaches or areas in lakes or coastal	
tidal waters in which the fish spend extended periods of time	
Terrestrial areas utilized by large or dense aggregations of vertebrate animals	
(semi-aquatic foragers) for breeding	
National river reach designated as recreational	
Habitat known to be used by State designated endangered or threatened species	50
Habitat known to be used by a species under review as to its Federal endangered	
or threatened status	
Coastal Barrier (partially developed)	
Federally designated Scenic or Wild River	
State land designated for wildlife or game management	25
State designated Scenic or Wild River	
State designated Natural Area	
Particular areas, relatively small in size, important to maintenance of unique biotic communities	
State designated areas for the protection of maintenance of aquatic life under the Clean Water	5
Act	
Wetlands See St Table 14 (Surface Water Pathway) or St Table 23 (Air Pathway)	

SI TABLE 14 (HRS TABLE 4-24): SURFACE WATER WETLANDS FRONTAGE VALUES

Total Length of Wetlands	Assigned	Value
Less than 0.1 mile	0	
0.1 to 1 mile	25	
Greater than 1 to 2 miles	50	
Greater than 2 to 3 miles	75	
Greater than 3 to 4 miles	100	
Greater than 4 to 8 miles	150	
Greater than 8 to 12 miles	250	
Greater than 12 to 16 miles	350	
Greater than 16 to 20 miles	450	
Greater than 20 miles	500	

SURFACE WATER PATHWAY (concluded) WASTE CHARACTERISTICS, THREAT, AND PATHWAY SCORE SUMMARY

					Score	
14. If an Actual Cont chain, or environ the calculated ha whichever is great	X					
characterization fa	ved release) for the actors below. Multipl quantity score and d	ha: ly e	zardous subs each by the s	sta urf	nce waste ace water	WC Score (from Table)
	Substance Value		HWO	7	Product	(Montenant of 100)
Drinking Water Threat Toxicity/Persistence	40	x	10,000		4ES	18
Food Chain Threat Toxicity/Persistence Bioaccumulation	200,000	x	10,000.	•	2E9	180
Environmental Threat Ecotoxicity/Persistence/ Ecobioaccumulation		x	,10,000.		ZEB	501
Product 0 >0 to <10 10 to <100 100 to <1,00 1,000 to <10 10,000 to <10 1E + 05 to <1 1E + 06 to <1 1E + 07 to <1 1E + 08 to <1 1E + 09 to <1 1E + 11 to <1 1E + 12 or green	0,000 E + 05 E + 06 E + 07 E + 08 E + 09 E + 10 E + 11 E + 12		WC Score 0 1 2 3 6 10 18 32 56 100 180 320 560 1000			

SURFACE WATER PATHWAY THREAT SCORES

Threat	Likelihood of Release (LR) Score	Targets (T) Score	Pathway Waste Characteristics (WC) Score (determined above)	Threat Score LR x T x WC 82,500
Drinking Water	550	5	.18	(maximum of 100)
Human Food Chain	550	20	180	(maximum of 100)
Environmental	550	5,5	100	(maximum of 60)

SURFACE WATER PATHWAY SCORE (Drinking Water Threat + Human Food Chain Threat + Environmental Threat)

(maximum of 100) 28,26

SOIL EXPOSURE PATHWAY

If there is no observed contamination (e.g., ground water plume with no known surface source), do not evaluate the soil exposure pathway. Discuss evidence for no soil exposure pathway.

Soil Exposure Resident Population Targets Summary

For each property (duplicate page 35 as necessary):

If there is an area of observed contamination on the property and within 200 feet of a residence, school, or day care center, enter on Table 15 each hazardous substance by sample ID. Record the detected concentration. Obtain cancer risk, and reference dose concentrations from SCDM. Sum the cancer risk and reference dose percentages for the substances listed. If cancer risk or reference dose concentrations are not available for a particular substance, enter N/A for the percentage. If the percentage sum calculated for cancer risk or reference dose equals or exceeds 100%, evaluate the residents and students as Level II. If both percentages are less than 100% or all are N/A, evaluate the targets as Level II.

No Data

SI TABLE 15: SOIL EXPOSURE RESIDENT POPULATION TARGETS

Residence ID: _			Level I	Level	II	Population		
Sample ID	Hazardous Substance	Conc. (mg/kg)	Cancer Risk Concentration	% of Cancer Risk Conc.	RfD	% of RID	Toxicity Value	References
	<u> </u>		Highest Percent		Sum of Percents		Sum of Percents	
Residence ID:_			Level I	Level	111	Population		
Sample ID	Hazardous Substance	Conc. (mg/kg)	Cancer Risk Concentration	% of Cancer Risk Conc.	RfD -	% of RfD	Toxicity Value	References
			Highest Percent		Sum of Percents		Sum of Percents	
Residence ID:			Level I		111	Population		
Sample ID	Hazardous Substance	Conc. (mg/kg)	Cancer Risk Concentration	% of Cancer Risk Conc.	RiD	% of RfD	Toxicity Value	References
			Highest Percent		Sum of Percents		Sum of Percents	

SOIL EXPOSURE PATHWAY WORKSHEET RESIDENT POPULATION THREAT

LIKELIHOOD OF EXPOSURE	Score	Data Type	Refs
 OBSERVED CONTAMINATION: If evidence indicates presence of observed contamination (depth of 2 feet or less), assign a score of 550; otherwise, assign a 0. Note that a likelihood of exposure score of 0 results in a soil exposure pathway score of 0. 	550		·
LE =	550		
TARGETS 2. RESIDENT POPULATION: Determine the number of people			
occupying residences or attending school or day care on or within 200 feet of areas of observed contamination (HRS section 5.1.3).			0
Level I: people x 10 = Sum =	0		lheconi
 RESIDENT INDIVIDUAL: Assign a score of 50 if any Level I resident population exists. Assign a score of 45 if there are Level II targets but no Level I targets. If no resident population exists (i.e., no Level I or Level II targets), assign 0 (HRS Section 5.1.3). 	0		
4. WORKERS: Assign a score from the table below for the total number of workers at the site and nearby facilities with areas of observed contamination associated with the site. Number of Workers Score			94
1 to 100 (5) 101 to 1,000 10 >1,000 15	5		
TERRESTRIAL SENSITIVE ENVIRONMENTS: Assign a value for each terrestrial sensitive environment (SI Table 16) in an area of observed contamination. Terrestrial Sensitive Environment Type			No Data
6. RESOURCES: Assign a score of 5 if any one or more of the following resources is present on an area of observed			
contamination at the site; assign 0 if none applies. Commercial agriculture Commercial silviculture Commercial livestock production or commercial livestock grazing	0		hecon.
Total of Targets T=	5		

SI TABLE 16 (HRS TABLE 5-5): SOIL EXPOSURE PATHWAY TERRESTRIAL SENSITIVE ENVIRONMENT VALUES

TERRESTRIAL SENSITIVE ENVIRONMENT	ASSIGNED VALUE
Terrestrial critical habitat for Federal designated endangered or threatened species National Park Designated Federal Wilderness Area National Monument	100
Terrestrial habitat known to be used by Federal designated or proposed threatened or endangered species National Preserve (terrestrial) National or State terrestrial Wildlife Refuge Federal land designated for protection of natural ecosystems Administratively proposed Federal Wilderness Area Terrestrial areas utilized by large or dense aggregations of animals (vertebrate species) for breeding	75
Terrestrial habitat used by State designated endangered or threatened species Terrestrial habitat used by species under review for Federal designated endangered or threatened status	50
State lands designated for wildlife or game management State designated Natural Areas Particular areas, relatively small in size, important to maintenance of unique biotic communities	25

SOIL EXPOSURE PATHWAY WORKSHEET NEARBY POPULATION THREAT

LI	KELIHOOD OF EXPOSURE	Score	Data Type	Ref.
7.	Attractiveness/Accessibility (from SI Table 17 or HRS Table 5-6) Value 25			
	Area of Contamination (from SI Table 18 or HRS Table 5-7) Value 100			
4	3560 x Zacres Likelihood of Exposure (from SI Table 19 or HRS Table 5-8)	250		
	108 9,000 LE	250]	
	•			
TA	RGETS	Score	Data Type	Ref.
TA 8.	Assign a score of 0 if Level I or Level II resident individual has bee evaluated or if no individuals live within 1/4 mile travel distance of an area of observed contamination. Assign a score of 1 if nearby population is within 1/4 mile travel distance and no Level I or Level II resident population has been evaluated.			Ref.
	Assign a score of 0 if Level I or Level II resident individual has bee evaluated or if no individuals live within 1/4 mile travel distance of an area of observed contamination. Assign a score of 1 if nearby population is within 1/4 mile travel distance and no Level I or Level			het a

 $3.15 \times 0.1 = 0.315$

SI TABLE 17 (HRS TABLE 5-6): ATTRACTIVENESS/ACCESSIBILITY VALUES

Area of Observed Contamination	Assigned Value
Designated recreational area	100
Regularly used for public recreation (for example, vacant lots in urban area)	75
Accessible and unique recreational area (for example, vacant lots in urban area)	75
Moderately accessible (may have some access improvements—for example, gravel road) with some public recreation use	50
Slightly accessible (for example, extremely rural area with no road improvement) with some public recreation use	25
Accessible with no public recreation use	10
Surrounded by maintained fence or combination of maintained fence and natural barriers	5
Physically inaccessible to public, with no evidence of public recreation use	0

SI TABLE 18 (HRS TABLE 5-7): AREA OF CONTAMINATION FACTOR VALUES

Total area of the areas of observed contamination (square feet)	Assigned Value
≤ to 5,000	5
> 5,000 to 125,000	20
> 125,000 to 250,000	40
> 250,000 to 375,000	60
> 375,000 to 500,000	80
> 500,000	100

SI TABLE 19 (HRS TABLE 5-8): NEARBY POPULATION LIKELIHOOD OF EXPOSURE FACTOR VALUES

AREA OF CONTAMINATION		ATTRA	CTIVENESS/A	CCESSIBILITY	FACTOR V	ALUE	
FACTOR VALUE	100	75	50	(25)	10	5	0
(100)	500	500	375	250	125	50	0
80	500	375	250	125	50	25	0
60	375	250	125	50	25	5	0
40	250	125	50	25	5	5	0
20	125	50	25	5	5	5	0
5	50	25	5	5 -	5	5	0

SI TABLE 20 (HRS TABLE 5-10): DISTANCE-WEIGHTED POPULATION VALUES FOR NEARBY POPULATION THREAT

Travel Distance		Number of people within the travel distance category												
Category (miles)	Pop.	0	1 to 10	11 to 30	31 to 100	101 to 300	301 to 1,000	1,001 to 3,000	to	10,001 to 30,000	30,001 to 100,000	100,001 to 300,000	300,001 to 1,000,000	Pop.
Greater than 0 to $\frac{1}{4}$	3	0	8.1	0.4	1.0	4	13	41	130	408	1,303	4,081	13,034	01
Greater than $\frac{1}{4}$ to $\frac{1}{2}$	6	0	0.05	0.2	0.7	2	7	20	65	204	652	2,041	6,517	00
Greater than $\frac{1}{2}$ to 1	453	0	0.02	0.1	0.3	1	(3)	10	33	102	326	1,020	3,258	3

SOIL EXPOSURE PATHWAY WORKSHEET (concluded)

	TE CHARACTERISTICS	in and colouisted for sail averages	
10.	Assign the nazardous waste quanti	ity score calculated for soil exposure	10,000
11.	Assign the highest toxicity value fro	m SI Table 16	1,000
12.	Multiply the toxicity and hazardous waste Characteristics score from the Product 0 >0 to <10 10 to <100 100 to <1,000 1,000 to <10,000 10,000 to <1E + 05 1E + 05 to <1E + 06 1E + 06 to <1E + 07 1E + 07 to <1E + 08 1E + 08 or greater		wc = 50

RESIDENT POPULATION THREAT SCORE:

(Likelihood of Exposure, Question 1; Targets = Sum of Questions 2, 3, 4, 5, 6) 550 x 5 x 56 = 154000

NEARBY POPULATION THREAT SCORE:

(Likelihood of Exposure, Question 7; Targets ≈ Sum of Questions 8, 9)

82,500

250x 1,315 y56= 13410

SOIL EXPOSURE PATHWAY SCORE: Resident Population Threat + Nearby Population Threat (Maximum of 100)

AIR PATHWAY

Air Pathway Observed Substances Summary Table

On SI Table 21, list the hazardous substances detected in air samples of a release from the site. Include only those substances with concentrations significantly greater than background levels. Obtain benchmark, cancer risk, and reference dose concentrations from SCDM. For NAAQS/NESHAPS benchmarks, determine the highest percentage of benchmark obtained for any substance. For cancer risk and reference dose, sum the percentages for the substances listed. If benchmark, cancer risk, or reference dose concentrations are not available for a particular substance, enter N/A for the percentage. If the highest benchmark percentage or the percentage sum calculated for cancer risk or reference dose equals or exceeds 100%, evaluate targets in the distance category from which the sample was taken and any closer distance categories as Level I. If the percentages are less than 100% or all are N/A, evaluate targets in that distance category and any closer distance categories that are not Level I as Level II.

SI TABLE 21: AIR PATHWAY OBSERVED RELEASE SUBSTANCES

	Sample ID:		Le	vellLe	evel 11	Distance from S	ources (mi)	References	
	Hazardous Substance	Conc. (µg/m³)	Gaseous Particulate	Benchmark Conc. (NAAQS or NESHAPS)	% of Benchmark	Cancer Risk Conc.	% of Cancer Risk Conc.	RfD	% of RID
		Highest Toxicity/		Highest		Sum of		Sum of	
		Mobility		Percent		Percents		Percents	
-	Sample ID:			Benchmark	evel II	Distance from S	Sources (mi)	References	
C	Hazardous Substance	Conc. (µg/m³)	Toxicity/ Mobility	Conc. (NAAQS or NESHAPS)	% of Benchmark	Cancer Risk Conc.	% of Cancer Risk Conc.	RfD	% of RID
4									
üĻ									
- [
L		Highest Toxicity/ Mobility		Highest Percent		Sum of Percents		Sum of Percents	
_	Sample ID:		L		evel II	Distance from 5	Sources (mi)	References	
	Hazardous Substance	Conc. (µg/m³)	Toxicity/ Mobility	Benchmark Conc, (NAAQS or NESHAPS)	% of Benchmark	Cancer Risk Conc.	% of Cancer Risk Conc.	RiD_	% of RfD
							<u> </u>		
									
Į		Highest Toxicity/ Mobility		Highest Percent		Sum of Percents		Sum of Percents	

AIR PATHWAY WORKSHEET

		Data		
LIKELIHOOD OF RELEASE	Score	Type	Refs	
OBSERVED RELEASE: If sampling data or direct observation support a release to air, assign a score of 550. Record observed release substances on SI Table 21;	556	\rightarrow	Oder Det. 1)]
2. POTENTIAL TO RELEASE: If sampling data do not support a	0000	 		
release to air, assign a score of 500. Optionally, evaluate air		1	bur	samples
migration gaseous and particulate potential to release (HRS	1	ĺ	air	Samples
Section 6.1.2).	1 500	l] ""	
			<u> </u>	J.
•	500	ł		
- LR =	000	1		
TARGETS	·			,
3. ACTUAL CONTAMINATION POPULATION: Determine the number			i	
of people within the target distance limit subject to exposure from a	1		j i	
release of a hazardous substance to the air.	j		Ì	
·			i 1	
a) Level I: people x 10 =	A			
b) Level II: 50 people x 1 = 50 Total =	IXO			ı
10 Lurk 13 on both 2705	0		· .	
4. POTENTIAL TARGET POPULATION: Determine the number of				
people within the target distance limit not subject to exposure from]	l	Ì	
a release of a hazardous substance to the air, and assign the total	1.39			
population score from SI Table 22. Sum the values and multiply the	1 11.01	- 1	j	
sum by 0.1.		- 1	- 1	
5. NEAREST INDIVIDUAL: Assign a score of 50 if there are any Level				
I targets. Assign a score of 45 if there are Level II targets but no		1		
Level I targets. If no Actual Contamination Population exists, assign	/ /			
the Nearest Individual score from SI Table 22.	/	İ		
6. ACTUAL CONTAMINATION SENSITIVE ENVIRONMENTS: Sum				
the sensitive environment values (SI Table 13) and wetland	1	i	1	
acreage values (SI Table 23) for environments subject to exposure				
from the release of a hazardous substance to the air.		ľ		
morn the release of a nazarosae substance to the an.	i	ł	- 1	
Sensitive Environment Type Value				
	1	. [- 1	
	1	i	ł	
		Į		
Wetland Acreage Value	j	}	ì	
	į	- 1		
		I	i	
			1	
		ł		
7. POTENTIAL CONTAMINATION SENSITIVE ENVIRONMENTS:	~ ~ ~ 1	1	1	
Use SI Table 24 to evaluate sensitive environments not subject to	2551	1	. 1	
exposure from a release.	1.00			
8. RESOURCES: Assign a score of 5 if one or more air resources			į.	
apply within 1/2 mile of a source; assign a 0 if none applies.	1		j	
Commercial agriculture			1	
Commercial silviculture	$\overline{}$	1	j	
Major or designated recreation area		j_		
	dr 22			
T = I	95.92	1		•

SI TABLE 22 (From HRS TABLE 6-17): VALUES FOR POTENTIAL CONTAMINATION AIR TARGET POPULATIONS

ſ								Numbe	r of Peop	ole within	the Distan	ce Categor	y			
	Distance from Site	Рор.	Nearest Individual (choose highest)	1 to 10	11 to 30	31 to 100	101 10 300	301 to 1,000	1,001 to 3,000	3,001 to 10,000	10,001 to 30,000	30,001 to 100,000	100,001 to 300,000	300,001 to 1,000,000	1,000,000 to 3,000,000	Pop. Value
	On a source	0	20	4	17	53	164	522	1,633	5,214	16,325	52,137	163,246	521,360	1,632,455	0
	0 to $\frac{1}{4}$ mile	3	•	0	4	13	41	131	408	1,304	4,081	13,034	40,812	130,340	408,114	1
	$>\frac{1}{4}$ to $\frac{1}{2}$ mile	6	2	0.2	0.9	3	9	28	88	282	882	2,815	8,815	28,153	88,153	0.2
	$>\frac{1}{2}$ to 1	453	1	0.06	0.3	0.9	3	(8)	26	83	261	834	2,612	8,342	26,119	3
C-45	> 1 to 2 . miles	871	0	0.02	0.09	0.3	8.0	3	8	27	83	266	833	2,659	8,326	3
	> 2 to 3 miles	629	0	0.009	0.04	0.1	0.4	\bigcirc	4	12	38	120	375	1,199	3,755	
	>3 to 4 miles	558	0 .	0.005	0.02	0.07.	0.2	0.7	2	7	28	73	229	730	2,285	0.7
		Nearest dividusi =	7												Sum =	13.9

References _____

^{*} Score = 20 if the Nearest Individual is within $\frac{1}{8}$ mile of a source; score = 7 if the Nearest Individual is between $\frac{1}{8}$ and $\frac{1}{4}$ mile of a source.

C-46

SI TABLE 23 (HRS TABLE 6-18): AIR PATHWAY VALUES FOR WETLAND AREA

Welland Area	Assigned Value
< 1 acre	0
1 to 50 acres	25
> 50 to 100 acres	75
> 100 to 150 acres	125
> 150 to 200 acres	175
> 200 to 300 acres	250
> 300 to 400 acres	350
> 400 to 500 acres	450
> 500 acres	500

SI TABLE 24: DISTANCE WEIGHTS AND CALCULATIONS FOR AIR PATHWAY POTENTIAL CONTAMINATION SENSITIVE ENVIRONMENTS

Distance	Distance Weight	Sensitive Environment Type and Value (from SI Tables 13 and 20)	Product
On a Source	0.10	x O	0
		x O	Ô
0 to 1/4 mile	0.025	* 25 Wetland	0,625
		x	7
		x —	
1/4 to 1/2 mile	0.0054	* 125 wetland	0,675
		x -	
454-4-9-	- 2222	X	
1/2 to 1 mile	0.0016	* 500 wetland	0.8
i		X	
44-0-7-	0.0005	X	
1 to 2 miles	0.0005	* 500 watland	0.72
!		X	
2 to 3 miles	0.00023	x 500 + 41 1	2 115
21031111103	. 0.00023	× 500 untland	0.115
1 1		x =	
3 to 4 miles	0.00014	x 500 W+ land	
0.0 7.1	0.0001	X -	0.07
	!	×	
> 4 miles	Ō	* 500 without	0
		Total Environments Score =	2 = 2 5

AIR PATHWAY (concluded)

WASTE CHARACTERISTICS If any Actual Contamination Targets exist for the air pathway, assign the calculated hazardous waste quantity score or a score of 100, whichever is greater; if there are no Actual Contamination Targets for the air pathway, assign the calculated HWQ score for sources available to air migration. Assign the highest air toxicity/mobility value from SI Table 21. Brazen 100 Samoles Multiply the air pathway toxicity/mobility and hazardous waste quantity scores. Assign the Waste Characteristics score from the table below: WC Score Product WC = 0 >0 to <10 10 to <100 2 3 100 to <1,000 1,000 to < 10,000 6 10,000 to <1E + 05 10 1E + 05 to <1E + 06 18 1E + 06 to <1E + 07 32 1E + 07 to <1E + 08 56

100

AIR PATHWAY SCORE:

1E + 08 or greater

LEXTXWC 82,500

(maximum of 100)

2×56=2685760

SITE SCORE CALCULATION	S	S ²
GROUND WATER PATHWAY SCORE (SGW)	32.21	1037.69
SURFACE WATER PATHWAY SCORE (Saw)	28,26	799.00
SOIL EXPOSURE (SS)	2.08	4.33
AIR PATHWAY SCORE (SA)	32,55	1059.80
SITE SCORE $\sqrt{\frac{S_{GW}^2 + S_{SW}^2 + S_S^2 + S_A^2}{4}}$ $2900.8\lambda = 4$		26.93

COMMENTS		
	•	
	·	
		İ
		I